¿Un transistor que «piensa» como un cerebro humano?
by MM | Ene 3, 2024 | Caso, EEUU, IA, Inteligencia Artificial, Productos / Servicios, Robótica, Tecnología
(3 de enero, 2024). Inspirados en el funcionamiento del cerebro humano, un equipo de investigadores de la Universidad Northwestern, el Boston College y el Instituto Tecnológico de Massachusetts (MIT) ha desarrollado un innovador transistor sináptico que alcanza niveles de pensamiento avanzados. Este dispositivo revolucionario tiene la capacidad de procesar y almacenar información simultáneamente, emulando así el funcionamiento del cerebro humano. Los investigadores han demostrado que va más allá de las simples tareas de aprendizaje automático, ya que puede categorizar datos y realizar aprendizaje asociativo. A diferencia de trabajos anteriores que requerían temperaturas criogénicas, este nuevo transistor se mantiene estable a temperatura ambiente. Además, opera a alta velocidad, consume una cantidad mínima de energía y retiene la información incluso cuando se interrumpe la alimentación eléctrica, lo que lo convierte en una solución ideal para aplicaciones del mundo real. El profesor Mark C. Hersam, codirector de la investigación, explica que este transistor sináptico se inspira en la arquitectura del cerebro, donde la memoria y el procesamiento de la información se integran, logrando una eficiencia energética superior a la de las computadoras digitales convencionales. Para crear este dispositivo, el equipo de Hersam exploró avances en la física de los «patrones muaré», que surgen cuando se superponen dos patrones. Al combinar materiales bidimensionales como el grafeno bicapa y el nitruro de boro hexagonal, lograron un patrón muaré que permitió la sintonización sin precedentes de las propiedades electrónicas. Este avance busca emular el pensamiento de nivel superior y representa un paso significativo en el desarrollo de tecnología de inteligencia artificial más avanzada. Los investigadores están trabajando en aplicaciones del mundo real y en la mejora de la eficiencia energética en dispositivos inteligentes que recopilan grandes cantidades de datos. |
___________________________________________ Imagen: MM con insumos de Pixabay. |